Generalized Information Matrix Tests for Detecting Model Misspecification

نویسندگان

  • Richard M. Golden
  • Steven S. Henley
  • Halbert White
  • Michael Kashner
  • Marc S. Paolella
چکیده

Generalized Information Matrix Tests (GIMTs) have recently been used for detecting the presence of misspecification in regression models in both randomized controlled trials and observational studies. In this paper, a unified GIMT framework is developed for the purpose of identifying, classifying, and deriving novel model misspecification tests for finite-dimensional smooth probability models. These GIMTs include previously published as well as newly developed information matrix tests. To illustrate the application of the GIMT framework, we derived and assessed the performance of new GIMTs for binary logistic regression. Although all GIMTs exhibited good level and power performance for the larger sample sizes, GIMT statistics with fewer degrees of freedom and derived using log-likelihood third derivatives exhibited improved level and power performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Model Misspecification in Generalized Linear Models with Error in Variables

We study maximum likelihood estimation of regression parameters in generalized linear models for a binary response with error-prone covariates when the distribution of the error-prone covariate or the link function is misspecified. We revisit the remeasurement method proposed by Huang, Stefanski, and Davidian (2006) for detecting latent-variable model misspecification and examine its operating ...

متن کامل

Halbert White

In this chapter we present a unified theory of specification testing that applies to a broad range of the data, model, and estimator configurations likely to be met in econometric practice. The abstract results are applied to obtain specification tests based on maximum-likelihood estimators for the parameters of dynamic models. We propose a dynamic information matrix test that should be useful ...

متن کامل

Testing for misspecification in generalized linear mixed models.

Generalized linear mixed models have become a frequently used tool for the analysis of non-Gaussian longitudinal data. Estimation is often based on maximum likelihood theory, which assumes that the underlying probability model is correctly specified. Recent research shows that the results obtained from these models are not always robust against departures from the assumptions on which they are ...

متن کامل

Asymptotic Refinements of a Misspecification-Robust Bootstrap for Generalized Method of Moments Estimators

I propose a nonparametric iid bootstrap that achieves asymptotic refinements for t tests and confidence intervals based on the generalized method of moments (GMM) estimators even when the model is misspecified. In addition, my bootstrap does not require recentering the bootstrap moment function, which has been considered as a critical procedure for bootstrapping GMM. The elimination of the rece...

متن کامل

How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It

“Robust standard errors” are used in a vast array of scholarship to correct standard errors for model misspecification. However, when misspecification is bad enough to make classical and robust standard errors diverge, assuming that it is nevertheless not so bad as to bias everything else requires considerable optimism. And even if the optimism is warranted, settling for a misspecified model, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016